SGM5 — Méthode des éléments finis Corrigé 3 - 2021

Exercice 1

Compte tenu de la charge répartie g = — yA, la forme forte du probléme s’écrit

u(x) e C%([0, h]) : —EA(d?u/dx?) = —jA 0<x<h
avec les conditions de bord
u@ =0

EA(du/dx)| =0

La formulation intégrale associée a pour expression
jg‘ [EA?u/dx2)—jA]dudx = 0 Vel

ou du dénote le deplacement longitudinal virtuel. Par intégration par parties, on trouve
[ 2 EA(du/dx)(ddu/dx) dx - [EA@uid ] ) = | g (A Sudx Y

En vertu de la contrepartie virtuelle su(0) = 0 de la condition aux limites essentielle (dépla-
cement virtuel cinématiquement admissible) et compte tenu de la condition de bord naturelle,
cette expression devient

| :)‘ EA(du/dx)(doufdx) dx = [ 2 (A Sudx Vel
de sorte que la forme faible du probléme a pour expression
ue U : jg EA(du/dx)(ddu/dx) dx = j: (“A)Sudx Vo e V

avec les classes de fonctions suivantes
U = {u(x) [u(x) e H*(10, hD; u(0) = 0}
V= {8u(x) | au(x) e H*(I0, h); 4u(0) = 0}
La forme faible approchée s’écrit
We MU jg EA(du"/dx)(dsu"/dx)dx = jg —A)u"dx v e e

ot u" et Su" sont les déplacements approchés réel et virtuel et ot UM et " sont les sous-espa-
ces respectifs de Uet V.

Dans la méthode de Galerkin, les approximations u" et su" sont choisies sous les formes
d’ordre n suivantes

u"(x) = iaihi(x)
i=1

n
au"(x) = saihi(x)
i=1
dans lesquelles les grandeurs hi(x) sont les fonctions de forme et les variables ¢ et dai sont les
inconnues discretes réelles et virtuelles. En portant ces approximations dans la forme faible
approchée, on obtient le systeme ci-apres de n équations a n inconnues
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n

Zk”aj =T (l =12,.., n)

j=1

Dans lequel les composantes ki; de la matrice de rigidité et les éléments r; du vecteur des for-
ces s’écrivent

h
kij = j , EA(dn;/dx)(dh; /dx) dx

= 2 hy (—7A) dx

En adoptant une approximation harmonique a deux parametres respectant la condition aux
limites essentielleen x =0

W00 = ah()rah, () 0 = snZ R - sin32—7;"

et en portant ces fonctions dans I’expression des termes de la matrice de rigidité d’ordre 2, on
trouve

ky = | 2 EA(dhy/dx)?dx = 72EA/(8h)
kyp = Ky = jg EA(dhy/dx)(dh,/dx)dx = O

ke = | g EA(dh,/dx)2dx = 972EA/(8h)
De méme, les composantes du vecteur des forces valent

= jg h(—A)dx = —2Ah/x

r, = j: h, (A dx = — 2Ah/(37)

On forme ainsi le systéme d’équations suivant

7?EA[1 O[ay]  —2jAh (3
8h [0 9|y r |1
dont les solutions s’écrivent
a, = —169h%/(7°E) a, = —16/h?/(277°E)
Le déplacement longitudinal et I’écrasement total de la barre valent par conséquent
_ 2 _ 2 2
uh(x) = 2o (27sinﬁ+sin3—”"] WMy = “HOMT o497
277°E 2h 2h 277°E E
Comme la valeur exacte de I’écrasement a pour valeur

_ 2

I’erreur relative sur le déplacement maximal s’éléve a —0.6%.
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Exercice 2

La forme faible approchée du probléme est identique a celle trouvée précédemment
e e : jg EA(du™/dx)(ddudx)dx = jg A vau" e Ve v

ol u" et Su" sont les déplacements approchés réel et virtuel et ol UM et " sont les sous-espa-
ces respectifs de U et 9. Rappelons que h dénote la hauteur de la colonne, A est I’aire de sa
section et E représente son module d’élasticité E, tandis que yest son poids spécifique.

Dans I’approche globale des éléments finis, les approximations u" et su" ont les allures

u"(x) = gihi(x)

i=1
au"(x) =" ihi(x)
i=1

dans lesquelles les grandeurs hi(x) sont les fonctions de forme, mais cette fois a support com-
pact, et les variables gi et &gi sont les déplacements nodaux réels et virtuels. En portant ces
approximations dans la formulation faible approchée, on obtient le systéme ci-aprés de n
équations a n inconnues

n
D kidj =1 (i=12,..n)
=

ou les composantes ki; de la matrice de rigidité et les éléments r; du vecteur des forces restent
écrites sous les formes

h
ki = , EA(dh;/dx)(dh /dx) dx

= g hy () dx

En choisissant un réseau a deux éléments finis a deux nceuds chacun, le déplacement est ap-
proché par deux fonctions linéaires par morceaux a support compact, qui respectent la condi-
tion aux limites essentielle en x = 0 (point nodal bloqué),
h
u () = gy (x) +d,h,(x)
2x

hi(x) = h 0<x<h/2

- 2(1-%) h/2 <x<h

ha(x) = 0 0<x<h/2

%—1 hi2 <x<h

En placant ces fonctions dans I’expression des composantes de la matrice de rigidité, on
obtient
_¢h 2. _ he
ky = | , EA(dh,/dx)*dx = |

EA2IN)dx+ [ EA(-2/h)2dx = 4EAh
0 h/2
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Ky, = Ky = jg EA(dh,/dx)(dh,/dx) dx = jhr;z EA(2/h)(=2/h)dx = — 2EA/h

h h
k,, = | EA(dh,/dx)%dx = EA(2/h)%dx = 2EA/h
2 = [, EAh/d)?dx = [ EA(2/h)
De méme, les termes du vecteur des forces s’écrivent

n = jg h, (=yA)dx = j:lz (2></h)(—7A)dX+j|:;2 2(1— x/N)(—yA)dx = —yAh/2

r, = J-g h, (=yA)dx = J.hk;z (2x/h =1)(-yA)dx = —yAh/4

On obtient ainsi le systéeme d’équations d’ordre 2 suivant

w0 -2

dont les solutions s’écrivent

o, = —3h*/(8E) g, = —7h*/(2E)
L’écrasement total de la barre, correspondant au déplacement du nceud 2, vaut donc
" (h) - h?
u(h) = =
4z oE

qui est la valeur exacte.

Il est possible de montrer qu’en raison de la nature particuliere du probleme, les deux solu-
tions nodales sont exactes (superconvergence) malgré la simplicité de I’approximation u" li-
néaire par morceaux. On notera de plus que I’approche globale, adopteée ici, de la méthode des
éléments finis est assez laborieuse et tire mal profit du caractére compact des fonctions de for-
me et de la nature répétitive de la discrétisation, a I’opposé de I’approche locale du procédé.



